THEORY OF COMPUTATION LECTURE
NOTES

UNIT 4 (10 Lectures)

Pushdown Automata: Definition Formal Definition of Pushdown Automata, A Graphical Notation for PDA’s,
Instantaneous Descriptions of a PDA,

Lanaguages of PDA: Acceptance by Final State, Acceptance by Empty Stack, From Empty Stack to Final State, From
Final State to Empty Stack

Equivalence of PDA’s and CFG’s: From Grammars to Pushdown Automata, From PDA’s to Grammars

Deterministic Pushdown Automata: Definition of a Deterministic PDA, Regular Languages and Deterministic
PDA’s, DPDA’s and Context-Free Languages, DPDA’s and Ambiguous Grammars

Properties of Context-Free Languages: Normal Forms for Context-Free Grammars, The Pumping Lemma for
Context-Free Languages, Closure Properties of Context-Free Languages, Decision Properties of CFL’s

Push down automata:

Regular language can be charaterized as the language accepted by finite automata. Similarly, we can
characterize the context-free language as the langauge accepted by a class of machines called "Pushdown
Automata” (PDA). A pushdown automation is an extension of the NFA.

It is observed that FA have limited capability. (in the sense that the class of languages accepted or
characterized by them is small). This is due to the "finite memory" (number of states) and "no external memory"
involved with them. A PDA is simply an NFA augmented with an "external stack memory". The addition of a
stack provides the PDA with a last-in, first-out memory management cpapability. This "Stack" or "pushdown
store" can be used to record a potentially unbounded information. It is due to this memory management
capability with the help of the stack that a PDA can overcome the memory limitations that prevents a FA to

a"t* | 20]

accept many interesting languages like [| . Although, a PDA can store an unbounded amount of
information on the stack, its access to the information on the stack is limited. It can push an element onto the
top of the stack and pop off an element from the top of the stack. To read down into the stack the top elements
must be popped off and are lost. Due to this limited access to the information on the stack, a PDA still has
some limitations and cannot accept some other interesting languages.

input tape

a a7 =15] || coocoococoooocoooooooooooooooooooooo An

Read-only head

finite 0
control —» X,
push/pop
X3
X2
Xi
=

As shown in figure, a PDA has three components: an input tape with read only head, a finite control and a
pushdown store.

The input head is read-only and may only move from left to right, one symbol (or cell) at a time. In each step,
the PDA pops the top symbol off the stack; based on this symbol, the input symbol it is currently reading, and

its present state, it can push a sequence of symbols onto the stack, move its read-only head one cell (or
symbol) to the right, and enter a new state, as defined by the transition rules of the PDA.

PDA are nondeterministic, by default. That is, = - transitions are also allowed in which the PDA can pop and
push, and change state without reading the next input symbol or moving its read-only head. Besides this, there
may be multiple options for possible next moves.

Formal Definitions : Formally, a PDA M is a 7-tuple M :[Q’ 2.1.0. 40, 4, Fj

where,

. 2 is a finite set of states,
.« = is a finite set of input symbols (input alphabets),
o ['is afinite set of stack symbols (stack alphabets),

= S *
° & is a transition function from Q [E - {E}) 3 to subset of Q xT

gy E L

zpel

is the start state

, is the initial stack symbol, and

Feg

, is the final or accept states.

Explanation of the transition function, 5:

If, for any A€ Z | d{¢.a.2) ={I[p1, 8).(py B). (P “EU} . This means intitutively that whenever the

PDA is in state (| reading input symbol a and zZ on top of the stack, it can nondeterministically for any i,
1=i<k

e goto state P
e pop Z off the stack

L]

el . 8=
e push ’&onto the stack (where A) (The usual convention is that if A=Aty X

® then

=t will be at the top and Ly at the bottom.)
e move read head right one cell past the current symbol a.

Ifa =<, then dlg.€,2) = {[}?'1 ’ﬁl) : [p:*’ ﬁb) - (p**’ ﬁk)} means intitutively that whenver the PDA is in

state (with Z on the top of the stack regardless of the current input symbol, it can nondeterministically for any
i, l=i=k ,

e go to state 2y
e pop Z off the stack

e push a'fionto the stack, and
e leave its read-only head where it is.

State transition diagram : A PDA can also be depicted by a state transition diagram. The labels on the arcs
indicate both the input and the stack operation. The transition

dip.a,z) ={':‘?='5¥:'} for & EE"‘J{E}’ pgeldzel and &€ 1—\‘is depicted by

a, z’'a

N
(P) L q)
Yt

Final states are indicated by double circles and the start state is indicated by an arrow to it from nowhere.

Configuration or Instantaneous Description (ID) :

A configuration or an instantaneous description (ID) of PDA at any moment during its computation is an

element of @xz =T describing the current state, the portion of the input remaining to be read (i.e.
under and to the right of the read head), and the current stack contents. Only these three elements can
affect the computation from that point on and, hence, are parts of the ID.

The start or inital configuartion (or ID) on input # is (. @2 . That is, the PDA always starts in its
start state, #ith its read head pointing to the leftmost input symbol and the stack containing only the

start/initial stack symbol, Z

The "next move relation" one figure describes how the PDA can move from one configuration to another
in one step.

Formally,

[q,cxm,ch:l s g [p,m, ,:5’{1-.*:]
i [p,ﬁ)e 5[g,a,z)

'a’ may be = or an input symbol.

i
Let |, J, K be IDs of a PDA. We define wewrite | '~ ¥ K, if ID | can become K after exactly i moves. The

*

b
relations I~ #and = ¥ define as follows

]

| k¥

2+l EIK- kS 1
| —& gif suchthatl F#Kand K # 3

* k]
| &) 3 Himsuchthatl =arg,

L] L]
Thatis, I~ #is the reflexive, transitive closure of '~ # . We saythat | = #J if the ID J follows from the ID | in
Zero or more moves.

(Note : subscript M can be dropped when the particular PDA M is understood.)
Language accepted by a PDA M

There are two alternative definiton of acceptance as given below.

1. Acceptance by final state :

. M= = T,a o F o . ,
Consider the PDA [Q + 2 Oe b Lo) . Informally, the PDA M is said to acceptits input # by final
state if it enters any final state in zero or more moves after reading its entire input, starting in the start
configuration on input & .

Formally, we define L(M), the language accepted by final state to be

*

= E*| o @ 2y I—;nr[prerﬁ)forsome pef 8l }

2. Acceptance by empty stack (or Null stack) : The PDA M acceptsits input & by empty stack if starting in the

start configuration on input & | it ever empties the stack w/o pushing anything back on after reading the entire
input. Formally, we define N(M), the language accepted by empty stack, to be

(@ € E*| [gn,m,z,:,) I—;ar[pfﬁ)forsome PEQ}

Note that the set of final states, F is irrelevant in this case and we usually let the F to be the empty seti.e. F =

Q.

_ (a8 |2 20
Example 1 : Here is a PDA that accepts the language .

M={0.E.T.6¢.2,F)

0={41.92.95.9:)

== {a, E:-}

r ={.:;t, &, z}

d ={q1, q4} , and ﬁconsists of the following transitions

1.8(qy.a.2) ={(g;.a2))
2. 8(gy.a.a) = ((g;,aa))
3 (g, b,a) ={ (g5.€))

4 blgy.b,a) ={(g5.€))
5. 8(g,.€,2) ={ (g,.2))

The PDA can also be described by the adjacent transition diagram.

a, z/az

a, a/aa b ale

Informally, whenever the PDA M sees an input a in the start state 21 with the start symbol Z on the top of the
stack it pushes a onto the stack and changes state to 9o (to remember that it has seen the first 'a’). On state
90t it sees anymore a, it simply pushes it onto the stack. Note that when M is on state 9o , the symbol on the

top of the stack can only be a. On state 90t it sees the first b with a on the top of the stack, then it needs to

start comparison of numbers of a's and b's, since all the a's at the begining of the input have already been
pushed onto the stack. It start this process by popping off the a from the top of the stack and enters in state q3

(to remember that the comparison process has begun). On state 9o , it expects only b's in the input (if it sees
any more a in the input thus the input will not be in the proper form of anbn). Hence there is no more on inputa

when it is in state 7. On state #0it pops off an a from the top of the stack for every b in the input. When it
sees the last b on state g3 (i.e. when the input is exaushted), then the last a from the stack will be popped off
and the start symbol z is exposed. This is the only possible case when the input (i.e. on =-input) the PDA M

will move to state 0which is an accept state.
we can show the computation of the PDA on a given input using the IDs and next move relations. For example,
following are the computation on two input strings.

Let the input be aabb. we start with the start configuration and proceed to the subsequent IDs using the
transition function defined

[gl,aabb,z:l = [‘5'2 ﬂbb’az) (using transition 1)

— [‘5'2 ’bb’ﬂa‘z) (using transition 2)

— [93’b’ﬂz) (using transition 3)

= =
o [q3’ ’Z) (using transition 4), s {q"" ’Z) (using transition 5) , 90is final state. Hence , accept. So the
string aabb is rightly accepted by M

we can show the computation of the PDA on a given input using the IDs and next move relations. For example,
following are the computation on two input strings.

i) Let the input be aabab.

[gl,aabab,z) i [qg,cxbab,az)
i [qg ,E:n.:;tf:n,czczz)

- [‘hﬂbﬂzj
No further move is defined at this point.
Hence the PDA gets stuck and the string aabab is not accepted.

Example 2 : We give an example of a PDA M that accepts the set of balanced strings of parentheses [] by
empty stack.
The PDA M is given below.

M = ({Q} {[]} {Z[} ’ 5,q,z,¢§) where §is defined as

Informally, whenever it sees a [, it will push the] onto the stack. (first two transitions), and whenever it sees a]
and the top of the stack symbol is [, it will pop the symbol [off the stack. (The third transition). The fourth
transition is used when the input is exhausted in order to pop z off the stack (to empty the stack) and accept.
Note that there is only one state and no final state. The following is a sequence of configurations leading to the
acceptance of the string [[]1[]1][]

(@.[0100100.2) (@010 0 2) = (g T0DI0 L) (g [10[0.[2) (g, 110 1L (=)

|—[ﬁi'= 1101 [Z) — [Q's Il],[z) — [ﬁi',[],Z) |—[ﬁi',],[z) — [Q',E, 2) |—[G',E,E)
Equivalence of acceptance by final state and empty stack.

It turns out that the two definitions of acceptance of a language by a PDA - accpetance by final state and empty
stack- are equivalent in the sense that if a language can be accepted by empty stack by some PDA, it can also
be accepted by final state by some other PDA and vice versa. Hence it doesn't matter which one we use, since

each kind of machine can simulate the other.Given any arbitrary PDA M that accpets the language L by final
state or empty stack, we can always construct an equivalent PDA M with a single final state that accpets
exactly the same language L. The construction process of M' from M and the proof of equivalence of M & M
are given below.

There are two cases to be considered.

CASE | : PDA M accepts by final state, Let M= [Q z.0.8. 4. 2. F)

A= (Q u{gj,] ,E,r,ﬁl’,QWZD’[qf])

Let gf be a new state not in Q.

r
Consider the PDA where ¢ as well as the following transition.

9'(a.e X) contains (gf’X) Vger

L(M) = L(¥")

and £ €1 1tis easy to show that M and M' are equivalent i.e.

Let & €L (M) . Then (@.22) - w(2.57) for some 4 €& ang ¥ET

Then (4. 2.2,) I—;r (g.£.%) |—1.~ (4’;,5, :V)

Thus M accepts @

* 1
’ i’ :E:
Conversely, let 4" accepts @ i.e. @ €L(M"), then (@. @2) 4 (g.67) M (qf ;V) for
: @ * (g.e
GEF) inherits all other moves except the last one from M. Hence [g”’ ’Z”) = e I[q, ’ ;V) for some

gEF

Thus M accepts # . Informally, on any input M” simulate all the moves of M and enters in its own final state

47 whenever M enters in any one of its final status in F. Thus M accepts a string @ iff M accepts it.

CASE Il : PDA M accepts by empty stack.

We will construct 4 from M in such a way that M simulates M and detects when M empties its stack.

M’ enters its final state 2 when and only when M empties its stack.Thus M will accept a string & iff M
accepts.

M =(Qu{ghe,] ZTU{X), 8.0, X {a])

transition of 5, as well as the following two transitions.

Let where 707 97 # and X ["and &' contains all the

1.8 (g6, %) ={(90.2,%))

and

2 &(q.6,%) =[(g_, ,e)] . WgeQ

Transitions 1 causes # " to enter the initial configuration of M except that M” will have its own bottom-of-stack
marker X which is below the symbols of M's stack. From this point onward M will simulate every move of M
since all the transitions of M are also in 4"

If M ever empties its stack, then M’ \when simulating M will empty its stack except the symbol X at the bottom.

At this point, M will enter its final state 9y by using transition rule 2, thereby (correctly) accepting the input.
We will prove that M and M are equivalent.

Let M accepts & . Then
(%.2.2) - 5 (9.€.€) for some ¢ = € But then

1
(20, @ %) 30 (0, @ 24) (by transition rule 1)

: =, A '
=2 [q, ’)(Since M includes all the moves of M)

1 ==
= be (gf) (by transition rule 2)
Hence, M aiso accepts # . Conversely, let A accepts @ .

Then 80 @ &) ip (@, @2 X) 0 (9.8 X) 3 (4,.€.€) tor some ¢ € &

@z, X) . lg.e X
Every move in the sequence, (0. @20 X) 5 (9.5 jwere taken from M.

Hence, M starting with its initial configuration will eventually empty its stack and accept the input i.e.

(% @2) |- 3 (9.5.5)

Equivalence of PDA’s and CFG’s:
We will now show that pushdown automata and context-free grammars are equivalent in expressive power,

that is, the language accepted by PDAs are exactly the context-free languages. To show this, we have toprove
each of the following:

i) Given any arbitrary CFG G there exists some PDA M that accepts exactly the same language
generated by G.
i) Given any arbitrary PDA M there exists a CFG G that generates exactly the same language

accpeted by M.
(i) CFA to PDA

We will first prove that the first part i.e. we want to show to convert a given CFG to an equivalent PDA.

. =N Z PN _ _ . .
Let the given CFG is (T) . Without loss of generality we can assume that G is in Greibach
Normal Form i.e. all productions of G are of the form .

A= ek By By where cezuie) and £ 20

From the given CFG G we now construct an equivalent PDA M that accepts by empty stack. Note that there is
only one state in M. Let

M=({g}.Z.N.8,9.5 ¢

, Where

e (s the only state

o Zisthe input alphabet,
e N is the stack alphabet ,
e (s the start state.

e Sis the start/initial stack symbol, and 5, the transition relation is defined as follows

A—cBB,-- B eP (gB2E8, B)cdgec A

For each production . We now want to show

that M and G are equivalent i.e. L(G)=N(M). i.e. for any W< = e L[G) ift = N(M) .

W L[G)

If , then by definition of L(G), there must be a leftmost derivation starting with S and deriving w.

N(M)

WS *
Again if , then one sysmbol. Therefore we need to show that for any *= z .

v (gws) - (a.e€)

But we will prove a more general result as given in the following lemma. Replacing A by S (the startsymbol)
and yby = gives the required proof.

X
* A=xy
Lemma For any X yEZ , re v and 4N ¢ via a leftmost derivative iff

(g, 200, 4) e (g0 7]

Proof : The proof is by induction on n.

Basis:n=0

1]
A=x _ _
& yiff A=y x=egpg ¥ =4

e A)=(q.5.7]

o (g d) (e y)

Induction Step :

n+l

A=xy
First, assume that % via a leftmost derivation. Let the last production applied in their derivation is

B_}Cﬁforsome CEEU{E}and ’SEN .

Then, for some #EZ | aeN
] 1
ﬂ:l; .::a:rB.::r:G% ax Sov = xy

where * = & gnd y=ga

Now by the indirection hypothesis, we get,
(g, a0y 4) 3 (.00, Be)
Again by the construction of M, we get

[g, ,5:1 = ﬁ[q,c, B)

so, from (1), we get

lg. @y, d) | (g.0v.8a) 5, (0.5, Ba)

w+l

since ¥ = @C ang ¥=HE e get (9,0, 4) M CRRY

#+l ml

That is, if A?xy,then [q=;’9”=*’4) — ar [G‘:J’J?’}

el

19,9,4) — 4 layr)

. Conversely, assume that

and let

ﬁ(q,c, B) - (q’ ﬁ} be the transition used in the last move. Then for some &< E‘, cEZ U{E}

and

ae I
(g, 000, 4) 5 (g.0v.Ba) 4 (0.7, Ba) - y=pa

’ A R = a2 where & = @ and :
Now, by the induction hypothesis, we get

)
A= @b

via a leftmost derivation.

Again, by the construction of M, Bﬁcﬁmust be a production of G. [Since lar 8) € (g o B)

1}

Applying the production to the sentential form #5¢ we get

] 1
ﬂ:l; mﬁ'&:@‘» e So = xy

n+l
A=xy
ie. F

via a leftmost derivation.
Hence the proof.

Example : Consider the CFG G in GNF

S—aAB
A7alaA
B—a/bB

The one state PDA M equivalent to G is shown below. For convenience, a production of G and the
corresponding transition in M are marked by the same encircled number.

(1) S—aAB
(A —a
(3) A—7aA
(4)B —a
(5)B —bB

M=({g) {2} .(S.48), 5.4 8 Z

. We have used the same construction discussed earlier

Some Useful Explanations :
Consider the moves of M on input aaaba leading to acceptance of the string.
Steps

1]

|_}
1. (g, aaaba, s) # (q, aaba, AB)
2]

|_>
2. A ((, aba, AB)
(3]
H
3. M (g, ba, B)
(*]
H
4. & (g,a,B)
5
|_>
5. & (g,=,S) Accept by empty stack.

Note : encircled numbers here shows the transitions rule applied at every step.
Now consider the derivation of the same string under grammar G. Once again, the production used at every
step is shown with encircled number.

i (3] () (5 (4
= = = = =
S 7 aAB ¥ aaAB ¥ aaaB 7 aaabB ¥ aaaba

Steps ™1 2 7 3 P4 T 5

Observations:

e There is an one-to-one correspondence of the sequence of moves of the PDA M and the derivation
sequence under the CFG G for the same input string in the sense that - number of steps in both the
cases are same and transition rule corresponding to the same production is used at every step (as
shown by encircled number).

e considering the moves of the PDA and derivation under G together, it is also observed that atevery
step the input read so far and the stack content together is exactly identical to the corresponding
sentential form i.e.
<what is Read><stack> = <sentential form>

Say, at step 2, Read so far = a

stack = AB
* S=xcy
Sentential form = aAB From this property we claim that {q,x, S) = e [q,E, H) iff Z . If the claim is
_ St (gee) SZE xe N(M) xel(G
true, then apply with “ == and we get (¢.%.8) 1 (2.5 :Iiff ¢ o ? (jiff xel()(by

definition)
Thus N(M) = L(G) as desired. Note that we have already proved a more general version of the claim
PDA and CFG:

We now want to show that for every PDA M that accpets by empty stack, there is a CFG G such that L(G) =
N(M)

we first see whether the "reverse of the construction” that was used in part (i) can be used here to construct an
equivalent CFG from any PDA M.

It can be show that this reverse construction works only for single state PDAs.

e Thatis, for every one-state PDA M there is CFG G such that L(G) = N(M). For every move of the
PDA M (2, BBy By)e dig, ¢, 4) A —=cB B, B
= [N, z, P, S:I

we introduce a production
S =z,

in the

grammar where N =T and

we can now apply the proof in part (i) in the reverse direction to show that L(G) = N(M).
But the reverse construction does not work for PDAs with more than one state. For example, consider the PDA

aba |n 2l
M produced here to accept the langauge [|]

M= ((p. 4).(a B) {20, 4.5,p.2.9)

G=(N, %, P, 5)

Now let us construct CFG using the "reverse" construction.

N={zu, ﬂ}, S=z,:,)

(Note
Transitions in M Corresponding Production in G
a,z, [A z, —» ad
a, AfAA A—=add
b, Afd A— b4
a, Afe Ad—a

We can drive strings like aabaa which is in the language.

§=zy= czuEl:G> am‘iﬂ:; aabﬁﬂ:l; aabmﬂ:G} etealete:

But under this grammar we can also derive some strings which are not in the language. e.g

5 =z, = ald = abA = abadA = abaad = abaaa

and s=z,3:>.:zﬂ:‘~.:z.:z.Butaa,cxbaaiﬁ[ﬂfj

Therefore, to complete the proof of part (ii) we need to prove the following claim also.

: NM)=NM
Claim: For every PDA M there is some one-state PDA M such that [) () .

It is quite possible to prove the above claim. But here we will adopt a different approach. We start with any
arbitrary PDA M that accepts by empty stack and directly construct an equivalent CFG G.

PDA to CFG

We want to construct a CFG G to simulate any arbitrary PDA M with one or more states. Without loss of
generality we can assume that the PDA M accepts by empty stack.

The idea is to use nonterminal of the form <PAQ> whenever PDA M in state P with A on top of the stack goes

to state 7. That is, for example, for a given transition of the PDA corresponding production in the grammaras
shown below,

| | (pda)z @ |
And, we would like to show, in general, that % jff the PDA M, when started from state P with A on

the top of the stack will finish processing & , arrive at state g and remove A from the stack.

we are now ready to give the construction of an equivalent CFG G from a given PDA M. we need to introduce
two kinds of producitons in the grammar as given below. The reason for introduction of the first kind of
production will be justified at a later point. Introduction of the second type of production has been justified in the
above discussion.

=(Q.Z.T. 6 g 2z, &) G=(NZ P S

Let be a PDA. We construct from M a equivalent CFG

Where

e Nis the set of nonterminals of the form <PAg> for ¥+ ¢ ey and AT and P contains the follwoing
two kind of production

S*(@'nznq} VgeE

BB ---B1ed e, A
If [ql’ 172 ") [q, ’),then for every choice of the sequence %293+ »%u1

#EL 11+l
Include the follwoing production

<'§"_,.1 I:1'-1':'4+1> —a {‘5'131‘5'2 } {fi’g 2':273 j:' <q:! B:! q:! +1 }

—
If n = 0, then the production is <q“1 ql} .For the whole exercise to be meaningful we want

*
TG /= @
{ " } % means there is a sequence of transitions (for PDA M), starting in state g, ending in g?“l,

during which the PDA M consumes the input string @ and removes A from the stack (and, of course, all other
symbols pushed onto stack in A's place, and so on.)

That is we want to claim that

PAa)2 @ (p.@ 4) (s.c€)

-

A=z <qn Zy q}:’m a0 @ z) (g8

If this claim is true, then let £ = da.)for some

o=
7 € Butforall €& we have = @z ITg}as production in G. Therefore,

L] L]

S:‘> z S =
<r-?.;. Dg} [q':" @, z':') - [q,E,E) ie. ¥ iff PDA M accepts w by empty stack or L(G) = N(M)

Now, to show that the above construction of CFG G from any PDA M works, we need to prove the proposed
claim.

o=
Note: At this point, the justification for introduction of the first type of production (of the form {qnz,:,q)) in
the CFG G, is quite clear. This helps use deriving a string from the start symbol of the grammar.

Pﬂq =W .

Proof : Of the claim < } G off [P’W’ ﬂ) = [g’e’ejfor some WEZ , A=l ang #- ¢ €0

The proof is by induction on the number of steps in a derivation of G (which of course is equal to the number of
moves taken by M). Let the number of steps taken is n.

The proof consists of two parts: ' if ' part and ' only if ' part. First, consider the ' if ' part

-

(P) (gee), (Pha)mw

Basisis n =1
Then [P,w, ﬂ) [q,E,E)

a production of G.

ez ufe’] PAgh—w

. In this case, it is clear that . Hence, by construction { iS

Then

Inductive Hypothesis :

Vi<a(Pow, A) (g6 (FAg)=w

Inductive Step : I[P,w, ﬂ) — '["i'ff)

ez

Forn >1, let w = ax for some ¢ { } and ¥< z' consider the first move of the PDA M which uses the
BB, B A

general transition (o JEI(p.a.d)(p.w,)

[R @x, 1‘1) — [9’1: x, Biby--- B :' (

consuming X in the remaining N-1 moves.

B}Bﬂ "'B

) . Now M must remove ® from stack while

TR % where "172 7 ™ s the prefix of X that M has consumed when B first appears at top of

Let
the stack. Then there must exist a sequence of states in M (as per construction) F2:93:7 Fa=Tna (with

ELE p), such that

[p,ax,ﬂ) |—|[f§"1: & BIBE"'B:!) =|[':?1: P R A 3132'--3;!)
[gzs GO CRLE 3233'--3?4) I[ql, . Bl) — [gz,E,E)]
[‘?:u 3. Bz) — [4’3:55)]

[This step implies

(95> %%y %y, ByBy--By) [This step implies

I—[qx’ Ky B:!)

- (2a.5.5) _(g.6€)

[Note: Each step takes less than or equal to N -1 moves because the total number of moves required assumed
to be n-1.]

That is, in general

'[é’z‘: 5, Bi:l |_|[gi+1,E,E)’ 1ZiZm+1

So, applying inductive hypothesis we get

gﬂg 1 ']
< T > ¢ ' 1Z2i=m+1 Byt corresponding to the original move

(pow.A)=(p.ax, 4) (g, x, BB, B,

in M we have added the following production in G.

We can show the computation of the PDA on a given input using the IDs and next move relations. For example,
following are the computation on two input strings.

i) Let the input be aabb. we start with the start configuration and proceed to the subsequent IDs using the
transition function defined

[ql,aabb,z) — [qz ,abb,cxz) &, ,E:'E:',.:;t.::;z)

(‘using transition 1) , S [(‘using transition 2)

- (g5.8.az) 93.6.2)

(‘using transition 3), [(‘using transition 4)

!E!z . ar . .
o [g‘*)(using transition 5) , 90is final state. Hence, accept.

So the string aabb is rightly accepted by M.

we can show the computation of the PDA on a given input using the IDs and next move relations. For example,
following are the computation on two input strings.

i) Let the input be aabab.

I[ql,aabab,z) i [qg,cxbab,az)

— [gg ,E:n.:;tf:n,czczz)

- (45.ab.az)
No further move is defined at this point.
Hence the PDA gets stuck and the string aabab is not accepted.

The following is a sequence of configurations leading to the acceptance of the string [[]1[]]1[]-

(@ l[101100.2) = (¢.L 1110 LI2) (2 1110 0LIZ)
(e 110020 = (e 10 LIz — (. D100 2)

—la.[1z) (a.)[z) - (g.8.2) (g.€.€)
Equivalence of acceptance by final state and empty stack.

It turns out that the two definitions of acceptance of a language by a PDA - accpetance by final state and empty
stack- are equivalent in the sense that if a language can be accepted by empty stack by some PDA, it can also
be accepted by final state by some other PDA and vice versa. Hence it doesn't matter which one we use, since
each kind of machine can simulate the other.Given any arbitrary PDA M that accpets the language L by final
state or empty stack, we can always construct an equivalent PDA M with a single final state that accpets
exactly the same language L. The construction process of M' from M and the proof of equivalence of M & M’
are given below

There are two cases to be considered.

M=(0.Z.T,8,4, 2, F)

CASE 1 : PDA M accepts by final state, Let . Let 9y be a new state not in Q.

A= (Q U{gj] ,E,r,ﬁf,anzﬂ’{qf])

Consider the PDA where 9 as well as the following transition.

5'(g.,X) g,.X) ¥ qeF

contains [and £ €1 1tis easy to show that M and M are equivalent i.e.

L{M)=L{M)
Let @ L[M) . Then [gﬂ’m’zﬂ) |—;ﬂ’ [q,E, }“:l for some ¢ eF and rex’

tren (G0 @ 20) -y (@5 9) g (9057)

Thus H° accepts ar

: * 1
: ae LA anz = .
Conversely, let 4" accepts @ i.e. (),then (@ @2) - M (7.87) s (gf }’) for some
gEF . M inherits all other moves except the last one from M. Hence [g” @, Z':') = e [q,E, }J) for some

gEF.

Thus M accepts ¥ . Informally, on any input M simulate all the moves of M and enters in its own final state
4y whenever M enters in any one of its final status in F. Thus M accepts a string @ iff M accepts it.
CASE 2 : PDA M accepts by empty stack.

we will construct ¢ from M in such a way that M simulates M and detects when M empties its stack.

M’ enters its final state 9y when and only when M empties its stack.Thus M will accept a string & iff M
accepts.

G Mmlevle) 2T (a8, X ()]

the transition of 5, as well as the following two transitions.

> ‘?jig

where and £ €1 and " contains all

1.8 (gy.6.4) ={(G’u=ZDX:'}

and
2 d(g.e,X) = [[gf ,e)] . Wge(

Transitions 1 causes H " to enter the initial configuration of M except that M” will have its own bottom-of-stack
marker X which is below the symbols of M's stack. From this point onward M' will simulate every move of M

. . . '
since all the transitions of M are also in M .

If M ever empties its stack, then M’ \when simulating M will empty its stack except the symbol X at the bottom.

At this point M , wWill enter its final state 9y by using transition rule 2, thereby (correctly) accepting the input.
we will prove that M and M are equivalent.

Let M accepts & .

Then

[G’n &, Zu) = [q’e’ E) for some ¥ = Q. But then,

1
[g” @, X) = 5 [q” &, Z”X) (by transition rule 1)

*
= 5 [q,E, Xj ('since M include all the moves of M)

1
2 E, E
= b (gf) (by transition rule 2)

Hence, M also accepts # .Conversely, let M accepts & .

: 1 * 1
Then (@ @.X) g (0. @20 X) -y (@8X) (qf’e’e)forsomeQ_

Every move in the sequence

[Q’u 2 & z,]}f:l ol [q,E, X:] were taken from M.

Hence, M starting with its initial configuration will eventually empty its stack and accept the input i.e.

(%0.@.2) 1 4 (9.5 €)

Deterministic PDA:

|) we define a PDA P = (Q,%,T,4, g0, Zo, F) to
be deterministic (a deterministic PDA or DPDA), if and only if the following
conditions are met:

1. §(g,a,X) has at most one member for any ¢ in @, a in X or a = ¢, and
XinT.

2. If (g, a, X) is nonempty, for some a in I, then §(q, €, X) must be empty.

Regular Languages and DPDA’s The DPDA'’s accepts a class of languages that is in between the regular
languages and CFL’s.

Theorem 6.17: If L is a regular language, then L = L(P) for some DPDA P.

PROOF: Essentially, a DPDA can simulate a deterministic finite automaton.
The PDA keeps some stack symbol Zy on its stack, because a PDA has to have
a stack, but really the PDA ignores its stack and just uses its state. Formally,
let A=(Q,%,04,q0,F) be a DFA. Construct DPDA

P =(Q,%,{Z},0p,q0, Zo, F)

by defining dp(q,a, Zy) = {(p,Zo)} for all states p and ¢ in @, such that
6/1 (q, a) =D .

We claim that (go,w, Zo) r}; (p, €, Zo) if and only if d4(go,w) = p. That is,
P simulates A using its state. The proofs in both directions are easy inductions
on |w|, and we leave them for the reader to complete. Since both A and P
accept by entering one of the states of F', we conclude that their languages are
the same. O

Deterministic Pushdown Automata (DPDA) and Deterministic Context-free Languages (DCFLS)

Pushdown automata that we have already defined and discussed are nondeterministic by default, that is , there may be two or
more moves involving the same combinations of state, input symbol, and top of the stock, and again, for some state and
top of the stock the machine may either read and input symbol or make an = - transition (without consuming any input).

In deterministic PDA , there is never a choice of move in any situation. This is handled by preventing the above mentioned two
cases as described in the definition below.

M=(0.%T.84,.%,F)

Defnition : Let be a PDA . Then M is deterministic if and only if both the following conditions are

satisfied.
(S ezl e
1. E{g’ﬂ’ Xj has at most one element for any g€La U{ } "and 4 €T (this condition prevents multiple choice f
- g, aand X
any combination of)
g X" & X)=
2. If (g.€.%) lg:’and (g.a.%) lg:’forevery‘IEE

(This condition prevents the possibility of a choice between a move with or without an input symbol).

Empty Production Removal

The productions of context-free grammars can be coerced into a variety of forms without
affecting the expressive power of the grammars. If the empty string does not belong to a language,
then there is a way to eliminate the productions of the form A— A from the grammar.

If the empty string belongs to a language, then we can eliminate 2 from all productions

save for the single production S — A. In this case we can also eliminate any occurrences of S from

the right-hand side of productions.
Procedure to find CFG with out empty Productions

Step (i): For all productions 4 — A, put 4 into V.
Step (ii): Repeat the following steps until no further variables are added to V.
For all productions|

B = A A5 . vives Ay

Step (i): For all productions 4 — A, put 4 into V..
Step (ii): Repeat the following steps until no further variables are added to V.
For all productions|

where 4,.4,.4,. 4, are in V}, put B into V.
To find P, let us consider all productions in P of the form

Ve gy o N AN O /]

foreachx, eV UT.

Unit production removal
Any production of a CFG of the form

A— B

where 4. B €V is called a “Unit-production”. Having variable one on either
side of a production is sometimes undesirable.

“Substitution Rule” is made use of in removing the unit-productions.

Gl\ en G = (V. T. S. P), a CFG with no A-productions. there exists a CFG
G= (V 7K P) that does not have any unit-productions and that is equivalent
to G.

Let us illustrate the procedure to remove unit-production through example
24.6.

Procedure to remove the unit productions:

Find all variables B, for each 4 such that
A=B
This is done by sketching a “depending graph™ with an edge (C. D)

whenever the grammar has unit-production C' — D, then 4 =B holds
whenever there is a walk between 4 and B.

The new grammar G. equivalent to G is obtained by letting into P all
non-unit productions of P.

Then for all 4 and B satisfying 4 —B .weadd to P

where B — ¥ | ¥,]...... | v, 1s the set of all rules in P with B on the left.

Left Recursion Removal

A variable A 1s left-recursive if it occurs in a production of the form
A— Ax
foranyxe Y uUT) .
A grammar i1s left-recursive if it contains at least one left-recursive
variable.
Every content-free language can be represented by a grammar that is not
left-recursive.

NORMAL FORMS
Two kinds of normal forms viz., Chomsky Normal Form and Greibach Normal Form (GNF) are
considered here.

Chomsky Normal Form (CNF)

Any context-free language L without any A-production is generated by a grammar is

which productions are of the form A — BC or A— a, where A, B eVy,andae V1.
Procedure to find Equivalent Grammar in CNF

(i) Eliminate the unit productions, and A-productions if any,

(ii) Eliminate the terminals on the right hand side of length two or more.

(iii) Restrict the number of variables on the right hand side of productions to two.

Proof:

For Step (i): Apply the following theorem: “Every context free language can be generated by a
grammar with no useless symbols and no unit productions”.

At the end of this step the RHS of any production has a single terminal or two or more symbols.
Let us assume the equivalent resulting grammar as G = (V\ ,V1 ,P,S).

For Step (ii): Consider any production of the form

A= NV cwevnn mz2.

<

If y, i1s a terminal. say
production

a’, then introduce a new variable B, and a

B,—a
Repeat this for every terminal on RHS.

Let P’ be the set of productions in P together with the new productions

B, — a.LetV,, be the set of variables in¥,, together with B/ s introduced for

every terminal on RHS.
The resulting grammar G, = (V5 .V;.P’. §) is equivalent to G and every
production in P’ has either a single terminal or two or more variables.

For step (iii): Consider 4 — BB, B

where B,’s are variables and m = 3.
If m =2, then 4 — B,, B, is in proper form.
The production 4 — BB, B,, 1s replaced by new productions

where D/S are new variables.
The grammar thus obtained is G,, which is in CNF.

Example
Obtain a grammar in Chomsky Normal Form (CNF) equivalent to the grammar G with
productions P given

S — adbB
A—adla
B — bB|b.

Solution

(i) There are no unit productions in the given set of P.
(i1) Amongst the given productions, we have

A—a.
B—b
which are in proper form.
For S — a4bB. we have
S — B, AB,B.
B,—a
B, —b.
For 4 — agA, we have
A— B, 4
For B — bB, we have

B — B,B.

(iii) In P’ above, we have only
S — B,AB,B
not in proper form.

Hence we assume new variables D, and D, and the productions
S — B,D,
D, — 4D,
D, - B,B

Therefore the grammar in Chomsky Normal Form (CNF) is G, with the
productions given by

S = B,Dy,
D, —» AD,,
D, — B,B,
A— B A,
B — B,B.
B, — a,
B, — b,
A— a,
and B —b.

Pumping Lemma for CFG

A “Pumping Lemma” is a theorem used to show that, if certain strings belong to a

language, then certain other strings must also belong to the language. Let us discuss a Pumping
Lemma for CFL. We will show that , if L is a context-free language, then strings of L that are at
least ‘m’ symbols long can be “pumped” to produce additional strings in L. The value of ‘m’
depends on the particular language. Let L be an infinite context-free language. Then there is some
positive integer ‘m’ such that, if S is a string of L of Length at least ‘m’, then

(i) S = uvwxy (for some u, v, w, X, Y)

(if) | vwx| <m

(i) | vx| >1

(iv) uvwx jyeL.

for all non-negative values of i.

It should be understood that

(i) If S is sufficiently long string, then there are two substrings, v and x, somewhere in S.

There is stuff (u) before v, stuff (w) between v and x, and stuff (y), after x.

(i) The stuff between v and x won’t be too long, because | vWx | can’t be larger than m.

(iii) Substrings v and x won’t both be empty, though either one could be.

(iv) If we duplicate substring v, some number (i) of times, and duplicate x the same number

of times, the resultant string will also be in L.

Definitions

A variable is useful if it occurs in the derivation of some string. This requires that

(a) the variable occurs in some sentential form (you can get to the variable if you start from S), and
(b) a string of terminals can be derived from the sentential form (the variable is not a “dead end”).
A variable is “recursive” if it can generate a string containing itself. For example, variable A is
recursive if

S = uAy
for some values of # and |
A recursive variable 4 can be either
(1) “Directly Recursive™, 1.e., there is a production
A — x, Ax,
for some strings x,.x, € (I UV) . or

(1) “Indirectly Recursive™, 1.e., there are variables x; and productions

A~ Xy ou

Xy =X 5
P, O . I
Xoar Vi

Proof of Pumping Lemma

(a) Suppose we have a CFL given by L. Then there is some context-free Grammar G that generates
L. Suppose

(i) L is infinite, hence there is no proper upper bound on the length of strings belonging to L.

(ii) L does not contain |.

(iii) G has no productions or I-productions.

There are only a finite number of variables in a grammar and the productions for each

variable have finite lengths. The only way that a grammar can generate arbitrarily long strings is if
one or more variables is both useful and recursive. Suppose no variable is recursive. Since the start
symbol is non recursive, it must be defined only in terms of terminals and other variables. Then
since those variables are non recursive, they have to be defined in terms of terminals and still other
variables and so on.

After a while we run out of “other variables” while the generated string is still finite. Therefore
there is an upper bond on the length of the string which can be generated from the start symbol.
This contradicts our statement that the language is finite.

Hence, our assumption that no variable is recursive must be incorrect.

(b) Let us consider a string X belonging to L. If X is sufficiently long, then the derivation of X must
have involved recursive use of some variable A. Since A was used in the derivation, the derivation
should have started as

S = uAdy
for some values of # and y. Since A was used recursively the derivation must
have continued as
*® *
S = udy = uvAxy

Finally the derivation must have eliminated all variables to reach a string
X 1n the language.

+

* * 5
S = udy = uvAxy = uvwxy =x
This shows that derivation steps

*

A= vAx
£ 3
and A=w
are possible. Hence the derivation
A=vwx

must also be possible.

It should be noted here that the above does not imply that a was used

recursively only once. The * of ;> could cover many uses of 4. as well as other
recursive variables.

There has to be some “last” recursive step. Consider the longest strings
that can be derived for v. w and x without the use of recursion. Then there is a
number ‘n° such that | vivx | < m.

Since the grammar does not contain any A-productions or unit
productions, every derivation step either introduces a terminal or increases the

length of the sentential form. Since 4 = v4x, it follows that | vx| > 0.

Finally, since wvA4xy occurs in the derivation, and 4 = v4x and 4 = ware
both possible. it follows that zv'wx" v also belongs to L.

This completes the proof of all parts of Lemma.

Usage of Pumping Lemma
The Pumping Lemma can be used to show that certain languages are not

context free.
Let us show that the language

L={a'b'c"|i>0}

1s not context-free.

Proof: Suppose L 1s a context-free language.
If string X e L. where| X | > m, it follows that X'= inwxy, where | vwx| < m.

Choose a value 7 that is greater than . Then. wherever vwx occurs in the
string @'b'¢’. it cannot contain more than two distinct letters it can be all a’s.
all 5’s. all ¢’s, or it can be a’s and &’s, or it can be 5’s and ¢’s.

Therefore the string vx cannot contain more than two distinct letters: but
by the “Pumping Lemma’ it cannot be empty. either, so it must contain at least
one letter.

Now we are ready to “pump”.

“3px? ymust also be in L. Since v and x can’t both be

Since wvwxyisin L. uv
empty,

sn"zu'x:"v > |y,

so we have added letters.
Both since vx does not contain all three distinct letters. we cannot have
added the same number of each letter.
32 :
Therefore, v 1wx™y cannot be in L.
Thus we have arrived at a “contradiction™.

Hence our original assumption, that L is context free should be false. Hence the language L is not
con text-free.

Example
Check whether the language given by L = {a mbmCn : m <n <2m}isa CFL or not.
Solution

2 . . .
Let s =a"b"c™". n being obtained from Pumping Lemma.

Then s = uvwxy, wherel <[wx|<n.

Therefore, vx cannot have all the three symbols a. 4. c.

If you assume that vx has only a’s and b’s then we can shoose 7 such that
uv'wx'y has more than 27 occurrence of @ or b and exactly 2» occurences of c.

Hence uv'wx' ye L, which is a contradiction. Hence L is not a CFL.

Closure properties of CFL — Substitution

Let ¥ be an alphabet, and suppose that for every symbol ¢ in ¥, we choose a
language L,. These chosen languages can be over any alphabets, not necessarily
¥ and not necessarily the same. This choice of languages defines a function s
(a substitution) on X, and we shall refer to L, as s(a) for each symbol a.

If w=ayay-'-a, is a string in *, then s(w) is the language of all strings
T1Ty -+ - T, such that string x; is in the language s(a;), for i = 1,2,...,n. Put
another way, s(w) is the concatenation of the languages s(a;)s(az) - s(an).
We can further extend the definition of s to apply to languages: s(L) is the
union of s(w) for all strings w in L.

Theorem 7.23: If L is a context-free language over alphabet £, and s is a
substitution on X such that s(a) is a CFL for each @ in X, then s(L) is a CFL.

PROOF: The essential idea is that we may take & CFG for L and replace each
terminal a by the start symbol of a CFG for language s(a). The result is a
single CFG that generates s(L). However, there are a few details that must be
gotten right to make this idea work.

More formally, start with grammars for each of the relevant languages, say
G = (V,Z,P,5) for L and G, = (V,,T,,P,,S,) for each a in . Since we
can choose any names we wish for variables, let us make sure that the sets of
variables are disjoint; that is, there is no symbol A that is in two or more of
V and any of the V,’s. The purpose of this choice of names is to make sure
that when we combine the productions of the various grammars into one set
of productions, we cannot get accidental mixing of the productions from two
grammars and thus have derivations that do not resemble the derivations in
any of the given grammars.

We construct a new grammar G' = (V', T, P', S) for s(L), as follows:

e V' is the union of V and all the V,’s for a in X.
e T’ is the union of all the T},’s for a in %.
e P’ consists of:

1. All productions in any P,, for a in .

2. The productions of P, but with each terminal a in their bodies re-
placed by S, everywhere a occurs.

Thus, all parse trees in grammar G’ start out like parse trees in G, but instead
of generating a yield in X*, there is a frontier in the tree where all nodes have
labels that are S, for some @ in ¥. Then, dangling from each such node is a
parse tree of Go, whose yield is a terminal string that is in the language s(a).

Applications of substitution theorem

Theorem 7.24: The context-free languages are closed under the following
operations:

1. Union.
2. Concatenation.
3. Closure (*), and positive closure ().

4. Homomorphism.

PROOF: Each requires only that we set up the proper substitution. The proofs
below each involve substitution of context-free languages into other context-free
languages, and therefore produce CFL’s by Theorem 7.23.

1. Union: Let L, and Ly be CFL’s. Then L; U L, is the language s(L),
where L is the language {1,2}, and s is the substitution defined by s(1) =
Ly and 8(2) = Ls.

2. Concatenation: Againlet L; and Ly be CFL’s. Then L, L, is the language
s(L), where L is the language {12}, and s is the same substitution as in
case (1).

3. Closure and positive closure: If L, is a CFL, L is the language {1}*, and
s is the substitution s(1) = Ly, then L} = s(L). Similarly, if L is instead
the language {1}*, then LT = s(L).

4. Suppose L is a CFL over alphabet X, and h is a homomorphism on 3. Let
s be the substitution that replaces each symbol a in ¥ by the language
consisting of the one string that is h(a). That is, s(a) = {h(a)}, for all @
in . Then h(L) = s(L).

Reversal

Theorem 7.25: If L is a CFL, then so is L.

PROOF: Let L = L(G) for some CFL G = (V,T,P,S). Construct G.R =
(V,T, PR S), where PR is the “reverse” of each production in P. 'I.‘ha,t is, if
A — a is a production of G, then A — ol is a production of GF. It is an eaiy
induction on the lengths of derivations in G and GR to show that L(GT) = LR,
Essentially, all the sentential forms of GR are reverses of sentential forms of G,
and vice-versa. We leave the formal proof as an exercise. O

Inverse Homomorphism:

Theorem 7.30: Let L be a CFL and h a homomorphism. Then A~1(L) is a
CFL.

PROOF: Suppose h applies to symbols of alphabet ¥ and produces strings in
T*. We also assume that L is a language over alphabet T'. As suggested above,
we start with a PDA P = (Q,T,T, 4, qo, Zo, F') that accepts L by final state.
We construct a new PDA

Pl = (Q', Z,Jl, (QQ,G), Zo,F X {6}) (71)

where:

1. Q' is the set of pairs (g,) such that:

(a) ¢ is a state in @, and

(b) z is a suffix (not necessarily proper) of some string h(e) for some
input symbol a in X.

That is, the first component of the state of P’ is the state of P, and the
second component is the buffer. We assume that the buffer will period-
ically be loaded with a string h{a), and then allowed to shrink from the
front, as we use its symbols to feed the simulated PDA P. Note that since
¥ is finite, and h(a) is finite for all a, there are only a finite number of
states for P'.

2. §' is defined by the following rules:

(a) &'((g,€),a,X) = {((q, h(a)),X)} for all symbols a in I, all states
g in @, and stack symbols X in I". Note that e cannot be ¢ here.

When the buffer is empty, P’ can consume its next input symbol a
and place h(a) in the buffer.

(b) If &(q, b, X) contains (p, <), where b is in T or b = ¢, then
6'(((1, b.’l?), €, X)

contains ((p,),v). That is, P’ always has the option of simulating
a move of P, using the front of its buffer. If b is a symbol in T, then
the buffer must not be empty, but if b = ¢, then the buffer can be
empty.

3. Note that, as defined in (7.1), the start state of P’ is (go,€); i.e., P’ starts
in the start state of P with an empty buffer.

4. Likewise, the accepting states of P’, as per (7.1), are those states (g,€)
such that ¢ is an accepting state of P.

The following statement characterizes the relationship between P’ and P:

* (qO,h(’UJ),Z()) IE (p’€a7) if and only if ((0016),10,20) ﬁ, ((p: e)vei')')'

